LEVEL 523
Existence discussion Integrality Congruence Weight 8


EXISTENCE OF NONLIFT
Define L, L' ∈ S2(K(523))+ and Q,Q' ∈ S4(K(523))+ as follows. (See bottom of page for definitions of the Theta Blocks Gritsenko lifts Gi, etc.) If we can prove that the weight 8 plus form
     F = Q2 + L Q L' + L2Q'
is identically zero, then by Theorem (see paper), it would follow that the form
     f = Q/L
would be a holomorphic cusp form. And because we know that there is at most one nonlift (see here), then it would follow that
     dim S2(K(523))= 18
and we can compute the action of the Hecke operators to see that actually this f is an eigenform. Its Fourier coefficients can be found here.

Conjecture: The above weight 8 cusp form F is zero.
Evidence: We have checked that the first 29699 coefficients are zero. By the discussion below on Weight 8 cusp forms, it is very likely that this is way more than sufficiently many vanishing Fourier coefficients to show that F=0.

Theorem: If the first 29699 Fourier coefficients determine a weight 8 cusp form, then the above weight 8 cusp form F is zero.


INTEGRALITY
Theorem: If the above f is a holomorphic cusp form, then it is integral.
Proof: This follows because f=Q/L where both Q and L are integral and because L can be checked to have content 1 by looking at its Fourier coefficients..


CONGRUENCES
Assuming that the nonlift f exists, then its first Fourier-Jacobi coefficient is φ where
     Grit(φ) = 9G10 + 3G11 − 8G12 + 3G13 + 3G14 + 8G15 − G16 − G17 − 15G2 + G3 + 7G4 − 3G5 + 15G6 + 3G7 − 4G8 − 11G9

Assuming that the nonlift exists and is integral, then by considering the maximal minors of the matrix of Fourier coefficients of f and the wt 2 Gritsenko lifts given by the listed theta blocks, we find that the GCD of the maximal minors must be a factor of 10, which proves that any nontrivial congruence relation involving f and the wt 2 Gritsenko lifts must be modulo a factor of 10.
After solving for all possible congruences modulo 10, we find that the only possible congruence relation is
     f ≡ Grit(φ) mod 10

Continuing to assume that the nonlift exists and is integral, we can prove that
     f Grit(φ) mod 10
because
     f Grit(φ) = ( − 10( − 4015755816 G12 + 2360972208 G1 G10 + 1728265836 G102 − 2043782714 G1 G11 + 6386898255 G10 G11 + 2651586447 G112 + 9478408403 G1 G12 + 1501143984 G10 G12 + 3579140127 G11 G12 − 2360096756 G122 − 2911360109 G1 G13 − 820690246 G10 G13 + 284752676 G11 G13 + 2148278027 G12 G13 + 307581287 G132 + 6950772846 G1 G14 + 5097181604 G10 G14 + 7010146843 G11 G14 − 951566249 G12 G14 − 2390501349 G13 G14 + 1749257177 G142 − 5207402291 G1 G15 + 215814614 G10 G15 + 59377008 G11 G15 + 3554187274 G12 G15 + 966898749 G13 G15 + 2760471701 G14 G15 − 924998496 G152 + 4708622256 G1 G16 − 3911046235 G10 G16 + 2146254351 G11 G16 − 3387768058 G12 G16 + 3422938551 G13 G16 − 7908174280 G14 G16 + 657359396 G15 G16 − 67716823 G162 + 1969391352 G1 G17 + 2173361685 G11 G17 − 67422647 G12 G17 + 209820120 G13 G17 − 190395024 G14 G17 + 3283996702 G15 G17 − 67716823 G16 G17 − 2012575893 G1 G2 − 5228559425 G10 G2 − 9481273500 G11 G2 − 12846544347 G12 G2 + 486224709 G13 G2 − 5071864362 G14 G2 − 219231953 G15 G2 + 4659852839 G16 G2 − 2815719173 G17 G2 + 2233148258 G22 + 170967889 G1 G3 − 2422434218 G10 G3 − 2963767642 G11 G3 + 4215836391 G12 G3 − 784580878 G13 G3 − 2492341082 G14 G3 − 2072461303 G15 G3 − 4007774473 G16 G3 − 40785280 G17 G3 + 6416959186 G2 G3 − 190395024 G32 + 727300043 G1 G4 − 8149237763 G10 G4 − 7083169473 G11 G4 + 3788224320 G12 G4 + 973632168 G13 G4 − 6101655260 G14 G4 − 4875260954 G15 G4 + 549531875 G16 G4 + 622932392 G17 G4 + 11745610296 G2 G4 + 743720067 G3 G4 + 2686524083 G42 + 855559759 G1 G5 − 5437962552 G10 G5 − 3310424583 G11 G5 − 1632741719 G12 G5 − 1693743763 G13 G5 − 87226492 G14 G5 − 3211115322 G15 G5 − 2626976482 G16 G5 + 643571095 G17 G5 + 2836474984 G2 G5 − 975379077 G3 G5 + 6436903061 G4 G5 + 658838136 G52 − 3401407815 G1 G6 + 3165974816 G10 G6 + 924301171 G11 G6 + 7688500388 G12 G6 − 518603200 G13 G6 + 1387909141 G14 G6 + 794817271 G15 G6 + 1765886552 G16 G6 + 270473549 G17 G6 + 1134314318 G2 G6 − 449297539 G3 G6 − 6379111855 G4 G6 + 7929074708 G5 G6 − 7051511966 G62 − 1905702370 G1 G7 + 30600659 G10 G7 + 1149974167 G11 G7 + 6167980553 G12 G7 − 2963911741 G13 G7 + 2963911741 G14 G7 − 3189884498 G15 G7 − 2457928833 G16 G7 + 4296740529 G2 G7 − 289164355 G3 G7 − 4295962858 G4 G7 − 3805473775 G5 G7 + 51824531 G6 G7 + 10563827898 G1 G8 + 5058984048 G10 G8 + 8311741818 G11 G8 − 10653199551 G12 G8 + 3942161339 G13 G8 + 786894319 G14 G8 + 6671031312 G15 G8 − 3771184131 G16 G8 + 203970333 G17 G8 − 15014345121 G2 G8 − 1474904717 G3 G8 − 1145037856 G4 G8 − 6035740097 G5 G8 + 10395225697 G6 G8 + 4253779386 G7 G8 − 3232794219 G82 + 10120564150 G1 G9 + 1833326321 G10 G9 + 3932497938 G11 G9 − 12152372572 G12 G9 + 2992062245 G13 G9 − 2527007411 G14 G9 + 6827146615 G15 G9 − 4052875972 G16 G9 − 3283996702 G17 G9 − 7233636066 G2 G9 + 2512365140 G3 G9 + 2023828442 G4 G9 − 1214705547 G5 G9 + 5665426219 G6 G9 + 4062061377 G7 G9 − 9218238072 G8 G9 − 6307203881 G92 − 227635588594 C1 − 200312907695 C10 − 2761398248 C103 − 277873292253 C11 + 70000094915 C12 + 85444113890 C13 − 106512401518 C14 + 397089501314 C15 + 303856121421 C16 + 99776244698 C17 + 169424937780 C18 − 2959510510 C19 + 300089152393 C2 − 97983157250 C20 + 360713155618 C21 − 392984348905 C22 − 247502922474 C23 − 505708313642 C24 − 100747857185 C25 + 57480236399 C26 − 136472213476 C27 − 41191080038 C28 − 188326311721 C29 − 480211365842 C3 − 6092517324 C30 − 131049113848 C31 + 61662888935 C32 − 43074018508 C33 − 9326721451 C34 + 19880967114 C35 − 79453310733 C36 − 200145392861 C37 + 7584371435 C38 + 25496947800 C39 − 54128505427 C4 − 7637250354 C40 − 110698994691 C41 + 28757362262 C42 + 26691975581 C43 − 115476355841 C44 + 40761986676 C45 − 78066105139 C46 − 92341565243 C47 + 63310798352 C48 − 147390499439 C49 − 151697693643 C5 − 12962207903 C50 − 55619490966 C51 + 36199878344 C53 − 8572022581 C54 − 29372472075 C55 − 16156394016 C56 − 23790148440 C57 + 4298148228 C58 − 6092517324 C59 − 79379357340 C6 − 156546061648 C60 + 1467286210 C61 − 69547166958 C62 − 12962207903 C63 − 3964097379 C64 − 27465338549 C65 + 24620071196 C66 − 5308112565 C67 + 3274199194 C68 − 89168622973 C69 − 191314797171 C7 − 26319780522 C71 + 7584371435 C72 + 27110920008 C74 + 20320053880 C75 − 28446296379 C76 − 5308112565 C77 − 26319780522 C78 + 521260193 C8 + 2686795127 C80 + 21741520354 C81 − 3826225183 C83 + 618699586 C84 − 5952741040 C85 − 3194186113 C88 − 2529632082 C89 − 227635588594 C9 + 12962207903 C92 + 1794369096 C96 + 293325632 D1 D10 + 7292290622 D1 D11 + 9391485457 D10 D11 + 1837629501 D1 D12 + 2761398248 D10 D12 − 4981805541 D11 D12 − 1917442237 D1 D13 − 4016637072 D10 D13 − 690835403 D11 D13 + 225656742 D12 D13 − 3184513293 D1 D14 − 1332568920 D10 D14 + 6456394861 D11 D14 + 3463524053 D12 D14 + 1099535111 D13 D14 − 424197178 D1 D15 − 1187096531 D10 D15 + 4061381321 D11 D15 + 568396945 D12 D15 + 1049058718 D13 D15 − 4061381321 D14 D15 + 8318066275 D1 D2 + 7070093370 D10 D2 − 13957530054 D11 D2 − 8786937858 D12 D2 + 3562080332 D13 D2 + 9108065066 D14 D2 + 3825102658 D15 D2 + 5546224625 D1 D3 + 4298251720 D10 D3 − 9574990433 D11 D3 − 6689948785 D12 D3 + 825086757 D13 D3 + 5659749567 D14 D3 + 3790254583 D15 D3 − 15428622101 D2 D3 + 2943733022 D1 D4 + 1695760117 D10 D4 − 5174390631 D11 D4 − 725809478 D12 D4 − 1527791476 D13 D4 + 2637169575 D14 D4 + 2384372870 D15 D4 − 10277280017 D2 D4 − 3776483204 D3 D4 + 8422630128 D1 D5 + 7174657223 D10 D5 − 12129635908 D11 D5 − 7958022782 D12 D5 + 3701492260 D13 D5 + 7280170920 D14 D5 + 3790254583 D15 D5 − 24137734502 D2 D5 − 12962207903 D3 D5 − 7810865819 D4 D5 − 3903730067 D1 D6 − 6875220383 D10 D6 + 8126242499 D11 D6 + 4538449452 D12 D6 − 980958318 D13 D6 − 6456394861 D14 D6 − 707668841 D15 D6 + 14578369503 D2 D6 + 10195829882 D3 D6 + 4231690575 D4 D6 + 12750475357 D5 D6 − 2943733022 D1 D7 − 1695760117 D10 D7 + 3683440000 D11 D7 + 1956502049 D12 D7 + 1562639551 D13 D7 − 2637169575 D14 D7 − 2384372870 D15 D7 + 8786329386 D2 D7 + 2285532573 D3 D7 + 1794369096 D4 D7 + 6319915188 D5 D7 − 5427535071 D6 D7 − 4911801515 D1 D8 − 4282976104 D10 D8 + 11459508081 D11 D8 + 5031096810 D12 D8 − 1501462637 D13 D8 − 6786319655 D14 D8 − 3650982687 D15 D8 + 22042753004 D2 D8 + 10510618302 D3 D8 + 8613573112 D4 D8 + 19541490731 D5 D8 − 12080347530 D6 D8 − 7157470556 D7 D8 − 352256325 D1 D9 − 2523997977 D10 D9 − 1345408852 D11 D9 − 225656742 D12 D9 + 2529632082 D13 D9 − 2325499604 D14 D9 − 1049058718 D15 D9 − 1563887354 D2 D9 + 129530407 D3 D9 + 1291292222 D4 D9 − 1703299282 D5 D9 + 1310560777 D6 D9 − 1291292222 D7 D9 − 826332800 D8 D9))/(968581135 G1 + 1728265836 G10 + 1019076966 G11 + 2950120945 G12 − 2098201197 G13 + 1903950240 G14 − 1156248120 G15 + 677168230 G16 − 801917476 G2 − 1903950240 G3 − 4251334248 G4 − 1460867636 G5 − 2704735489 G6 + 30600659 G7 + 3669486717 G8 + 3991246745 G9)
and note that this is a multiple of 10 because the content of the denominator is 1, and because the numerator is obviously a multiple of 10.


WEIGHT 8 CUSP FORMS
In an attempt to find manageable set of determining coefficients for the weight 8 space of cusp forms, we will attempt to find a spanning set for it. The weight 8 space of cusp forms has dimension
     dim S8(K(523)) = 8808
We attempt to find cusp forms in the plus and minus parts separately and hope that the dimensions add up to the above 8808.

There has not yet been an attempt to span S8(K(523))+.


Weight 2 Theta Blocks (Number of wt 2 Gritsenko lifts: 17)
     G1 = Grit(THBK2(3,4,5,6,7,9,10,12,15,19))
     G2 = Grit(THBK2(3,4,5,6,7,8,11,13,14,19))
     G3 = Grit(THBK2(3,4,4,7,8,8,11,11,15,19))
     G4 = Grit(THBK2(3,4,4,5,7,7,11,12,16,19))
     G5 = Grit(THBK2(3,3,5,6,8,9,11,12,14,19))
     G6 = Grit(THBK2(3,3,4,7,8,10,11,11,14,19))
     G7 = Grit(THBK2(3,3,4,7,7,10,11,12,15,18))
     G8 = Grit(THBK2(3,3,4,7,7,10,10,13,16,17))
     G9 = Grit(THBK2(3,3,4,6,7,9,10,11,15,20))
     G10 = Grit(THBK2(3,3,4,6,6,7,9,12,15,21))
     G11 = Grit(THBK2(2,5,5,7,7,7,12,12,14,19))
     G12 = Grit(THBK2(2,4,5,7,7,9,11,11,16,18))
     G13 = Grit(THBK2(2,4,5,6,7,9,11,13,16,17))
     G14 = Grit(THBK2(2,4,5,6,6,10,11,14,16,16))
     G15 = Grit(THBK2(2,4,4,6,7,11,11,13,15,17))
     G16 = Grit(THBK2(2,3,5,7,8,10,11,12,13,19))
     G17 = Grit(THBK2(2,3,5,5,7,8,12,13,14,19))


Weight 4 Theta Blocks (Number of wt 4 Gritsenko lifts: 104)
     C1 = Grit(THBK4(1,1,1,1,1,1,4,32))
     C2 = Grit(THBK4(1,1,1,1,1,1,16,28))
     C3 = Grit(THBK4(1,1,1,1,1,2,14,29))
     C4 = Grit(THBK4(1,1,1,1,1,2,19,26))
     C5 = Grit(THBK4(1,1,1,1,1,4,8,31))
     C6 = Grit(THBK4(1,1,1,1,1,4,20,25))
     C7 = Grit(THBK4(1,1,1,1,1,10,10,29))
     C8 = Grit(THBK4(1,1,1,1,1,13,14,26))
     C9 = Grit(THBK4(1,1,1,1,1,14,19,22))
     C10 = Grit(THBK4(1,1,1,1,1,16,16,23))
     C11 = Grit(THBK4(1,1,1,1,2,5,22,23))
     C12 = Grit(THBK4(1,1,1,1,3,6,6,31))
     C13 = Grit(THBK4(1,1,1,1,3,15,18,22))
     C14 = Grit(THBK4(1,1,1,1,4,4,7,31))
     C15 = Grit(THBK4(1,1,1,1,4,4,13,29))
     C16 = Grit(THBK4(1,1,1,1,4,8,11,29))
     C17 = Grit(THBK4(1,1,1,1,4,11,11,28))
     C18 = Grit(THBK4(1,1,1,1,4,12,21,21))
     C19 = Grit(THBK4(1,1,1,1,4,15,15,24))
     C20 = Grit(THBK4(1,1,1,1,5,6,9,30))
     C21 = Grit(THBK4(1,1,1,1,5,7,22,22))
     C22 = Grit(THBK4(1,1,1,1,5,8,13,28))
     C23 = Grit(THBK4(1,1,1,1,5,16,19,20))
     C24 = Grit(THBK4(1,1,1,1,6,9,21,22))
     C25 = Grit(THBK4(1,1,1,1,8,16,19,19))
     C26 = Grit(THBK4(1,1,1,1,8,17,17,20))
     C27 = Grit(THBK4(1,1,1,1,9,14,18,21))
     C28 = Grit(THBK4(1,1,1,1,11,11,20,20))
     C29 = Grit(THBK4(1,1,1,1,13,15,18,18))
     C30 = Grit(THBK4(1,1,1,1,13,16,16,19))
     C31 = Grit(THBK4(1,1,1,2,2,5,13,29))
     C32 = Grit(THBK4(1,1,1,2,2,7,19,25))
     C33 = Grit(THBK4(1,1,1,2,2,9,15,27))
     C34 = Grit(THBK4(1,1,1,2,2,11,17,25))
     C35 = Grit(THBK4(1,1,1,2,3,3,11,30))
     C36 = Grit(THBK4(1,1,1,2,3,9,18,25))
     C37 = Grit(THBK4(1,1,1,2,5,7,17,26))
     C38 = Grit(THBK4(1,1,1,2,6,7,15,27))
     C39 = Grit(THBK4(1,1,1,2,6,9,9,29))
     C40 = Grit(THBK4(1,1,1,2,11,11,11,26))
     C41 = Grit(THBK4(1,1,1,3,3,4,15,28))
     C42 = Grit(THBK4(1,1,1,3,3,15,20,20))
     C43 = Grit(THBK4(1,1,1,3,5,18,18,19))
     C44 = Grit(THBK4(1,1,1,3,14,15,17,18))
     C45 = Grit(THBK4(1,1,1,4,4,5,5,31))
     C46 = Grit(THBK4(1,1,1,4,7,7,20,23))
     C47 = Grit(THBK4(1,1,1,4,9,9,9,28))
     C48 = Grit(THBK4(1,1,1,5,5,5,22,22))
     C49 = Grit(THBK4(1,1,1,6,13,15,17,18))
     C50 = Grit(THBK4(1,1,1,9,9,9,20,20))
     C51 = Grit(THBK4(1,1,1,9,15,15,16,16))
     C52 = Grit(THBK4(1,1,2,2,2,2,2,32))
     C53 = Grit(THBK4(1,1,2,2,2,8,22,22))
     C54 = Grit(THBK4(1,1,2,2,5,5,5,31))
     C55 = Grit(THBK4(1,1,2,2,7,13,17,23))
     C56 = Grit(THBK4(1,1,2,2,8,18,18,18))
     C57 = Grit(THBK4(1,1,2,2,13,17,17,17))
     C58 = Grit(THBK4(1,1,2,3,3,3,22,23))
     C59 = Grit(THBK4(1,1,2,4,16,16,16,16))
     C60 = Grit(THBK4(1,1,2,5,5,13,14,25))
     C61 = Grit(THBK4(1,1,2,7,9,9,10,27))
     C62 = Grit(THBK4(1,1,2,13,14,15,15,15))
     C63 = Grit(THBK4(1,1,3,3,3,12,12,27))
     C64 = Grit(THBK4(1,1,3,3,3,14,14,25))
     C65 = Grit(THBK4(1,1,3,3,4,5,12,29))
     C66 = Grit(THBK4(1,1,3,5,5,6,7,30))
     C67 = Grit(THBK4(1,1,3,5,6,7,21,22))
     C68 = Grit(THBK4(1,1,5,8,8,9,9,27))
     C69 = Grit(THBK4(1,1,5,12,13,15,15,16))
     C70 = Grit(THBK4(1,1,8,14,14,14,14,14))
     C71 = Grit(THBK4(1,1,9,11,14,14,15,15))
     C72 = Grit(THBK4(1,2,2,2,2,2,8,31))
     C73 = Grit(THBK4(1,2,2,2,2,2,20,25))
     C74 = Grit(THBK4(1,2,2,2,8,8,8,29))
     C75 = Grit(THBK4(1,2,3,3,3,10,17,25))
     C76 = Grit(THBK4(1,2,4,4,4,4,4,31))
     C77 = Grit(THBK4(1,2,5,6,7,7,21,21))
     C78 = Grit(THBK4(1,2,13,13,13,13,13,14))
     C79 = Grit(THBK4(1,3,3,3,3,3,10,30))
     C80 = Grit(THBK4(1,3,3,3,3,3,18,26))
     C81 = Grit(THBK4(1,3,4,4,5,5,15,27))
     C82 = Grit(THBK4(1,3,4,4,5,15,15,23))
     C83 = Grit(THBK4(1,3,5,5,5,5,6,30))
     C84 = Grit(THBK4(1,3,6,9,9,9,9,26))
     C85 = Grit(THBK4(1,5,11,13,13,13,14,14))
     C86 = Grit(THBK4(1,7,7,7,7,7,20,20))
     C87 = Grit(THBK4(1,7,8,8,8,8,8,26))
     C88 = Grit(THBK4(1,9,12,12,13,13,13,13))
     C89 = Grit(THBK4(1,10,10,13,13,13,13,13))
     C90 = Grit(THBK4(2,2,2,2,2,11,11,28))
     C91 = Grit(THBK4(2,2,2,2,2,12,21,21))
     C92 = Grit(THBK4(2,3,3,3,3,9,14,27))
     C93 = Grit(THBK4(2,3,3,3,3,9,21,22))
     C94 = Grit(THBK4(2,3,4,4,4,12,20,21))
     C95 = Grit(THBK4(2,8,8,8,8,8,19,19))
     C96 = Grit(THBK4(3,3,3,3,4,11,12,27))
     C97 = Grit(THBK4(3,4,6,6,6,6,6,29))
     C98 = Grit(THBK4(3,5,5,5,5,6,15,26))
     C99 = Grit(THBK4(3,11,11,12,12,13,13,13))
     C100 = Grit(THBK4(4,4,13,13,13,13,13,13))
     C101 = Grit(THBK4(4,5,5,14,14,14,14,14))
     C102 = Grit(THBK4(4,7,7,8,8,8,8,26))
     C103 = Grit(THBK4(5,5,7,7,7,7,20,20))
     C104 = Grit(THBK4(6,11,12,12,12,12,12,13))


Weight 2 "Tweak" Theta Blocks that yield Gritsenko lifts with Characters
     D1 = Grit(THBK2(1,1,11,20))
     D2 = Grit(THBK2(1,8,13,17))
     D3 = Grit(THBK2(3,3,8,21))
     D4 = Grit(THBK2(3,3,12,19))
     D5 = Grit(THBK2(3,8,15,15))
     D6 = Grit(THBK2(3,9,12,17))
     D7 = Grit(THBK2(4,5,11,19))
     D8 = Grit(THBK2(4,7,13,17))
     D9 = Grit(THBK2(4,13,13,13))
     D10 = Grit(THBK2(5,7,7,20))
     D11 = Grit(THBK2(5,11,11,16))
     D12 = Grit(THBK2(7,7,8,19))
     D13 = Grit(THBK2(7,7,13,16))
     D14 = Grit(THBK2(7,8,11,17))
     D15 = Grit(THBK2(8,11,13,13))


The set A4 of 4x4 matrices used in theta tracing. Here |A4|=17.
     {{20,5,6,-4},{5,22,8,2},{6,8,24,1},{-4,2,1,34}}
     {{16,1,-2,3},{1,26,8,10},{-2,8,28,9},{3,10,9,32}}
     {{18,6,7,-2},{6,22,10,-1},{7,10,26,2},{-2,-1,2,38}}
     {{24,0,-7,-10},{0,24,2,1},{-7,2,24,3},{-10,1,3,26}}
     {{24,10,9,9},{10,24,11,6},{9,11,28,2},{9,6,2,30}}
     {{14,0,-1,-3},{0,18,7,6},{-1,7,36,15},{-3,6,15,40}}
     {{20,7,3,-5},{7,22,5,-8},{3,5,28,2},{-5,-8,2,30}}
     {{24,10,9,8},{10,24,11,11},{9,11,28,8},{8,11,8,32}}
     {{18,6,0,1},{6,24,7,10},{0,7,26,11},{1,10,11,36}}
     {{20,6,9,6},{6,24,11,7},{9,11,26,7},{6,7,7,36}}
     {{18,1,4,7},{1,28,11,3},{4,11,30,14},{7,3,14,30}}
     {{16,3,-1,-6},{3,18,6,1},{-1,6,36,18},{-6,1,18,40}}
     {{14,0,-1,-7},{0,20,5,-2},{-1,5,20,0},{-7,-2,0,56}}
     {{24,5,4,10},{5,24,5,7},{4,5,28,13},{10,7,13,28}}
     {{18,5,-1,2},{5,20,1,-6},{-1,1,22,1},{2,-6,1,40}}
     {{14,1,2,6},{1,20,6,9},{2,6,32,9},{6,9,9,40}}
     {{16,3,-3,5},{3,18,4,5},{-3,4,28,2},{5,5,2,40}}